Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Acta cir. bras ; 35(4): e202000406, 2020. tab, graf
Article in English | LILACS | ID: biblio-1130636

ABSTRACT

Abstract Purpose To investigate the role of Rosmarinic acid (RA) in the prevention of traumatic brain injury and the immunohistochemical analysis of IBA-1 and GFAP expressions. Methods Healthy male rats were randomly divided into 3 groups consisting of 10 rats. Groups were as follows; control group, traumatic brain injury (TBI) group, and TBI+RA group. After traumatic brain injury, blood samples were taken from the animals and analyzed with various biochemical markers. And then IBA-1 and GFAP expressions were evaluated immunohistochemically. Results Significant results were obtained in all biochemical parameters between groups. Immunohistochemical sections showed IBA-1 not only in microglia and macrophage activity but also in degenerative neurons in blood vessel endothelial cells. However, GFAP reaction and post-traumatic rosmarinic acid administration showed positive expression in astrocytes with regular structure around the blood vessel. Conclusion Rosmarinic acid in blood vessel endothelial cells showed that preserving the integrity of astrocytic structure in the blood brain barrier may be an important antioxidant.


Subject(s)
Animals , Male , Calcium-Binding Proteins/analysis , Cinnamates/pharmacology , Craniotomy/methods , Depsides/pharmacology , Brain Injuries, Traumatic/prevention & control , Glial Fibrillary Acidic Protein/analysis , Microfilament Proteins/analysis , Reference Values , Immunohistochemistry , Random Allocation , Astrocytes/drug effects , Reproducibility of Results , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Brain Injuries, Traumatic/surgery , Brain Injuries, Traumatic/pathology , Glutathione Peroxidase/analysis , Malondialdehyde/analysis
2.
Arq. neuropsiquiatr ; 76(11): 736-742, Nov. 2018. graf
Article in English | LILACS | ID: biblio-973938

ABSTRACT

ABSTRACT Neuropathic pain is a chronic pain condition caused by damage or dysfunction of the central or peripheral nervous system. Electroacupuncture (EA) has an antinociceptive effect on neuropathic pain, which is partially due to inhibiting astrocyte activation in the spinal cord. We found that an intrathecal injection of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, reversed the antinociceptive effects of EA in a chronic constriction injury-induced neuropathic pain model. The expression of GFAP in L4-L6 spinal cord was significantly upgraded, while DPCPX suppressed the effect of the EA-mediating inhibition of astrocyte activation, as well as wiping out the EA-induced suppression of cytokine content (TNF-α). These results indicated that the adenosine A1 receptor is involved in EA actions during neuropathic pain through suppressing astrocyte activation as well as TNF-α upregulation of EA, giving enlightenment to the mechanisms of acupuncture analgesia and development of therapeutic targets for neuropathic pain.


RESUMO A dor neuropática é uma condição de dor crônica causada por dano ou disfunção do sistema nervoso central ou periférico. A eletroacupuntura (EA) tem um efeito antinociceptivo durante a dor neuropática, que é parcialmente devido à inibição da ativação de astrócitos na medula espinhal. Descobrimos que a injeção intratecal de 8-ciclopentil-1,3-dipropilxantina (DPCPX), um antagonista seletivo do receptor de adenosina A1, reverteu os efeitos antinociceptivos da EA no modelo de dor neuropática induzida por lesão por constrição crônica (CCI). A expressão da GFAP na medula espinal L4-L6 foi significativamente melhorada, enquanto a DPCPX suprimiu o efeito da inibição mediadora da EA na ativação de astrócitos, bem como eliminou a supressão induzida pela EA do conteúdo de citocina (TNF-α). Esses resultados indicam que o receptor de adenosina A1 está envolvido nas ações da EA durante a dor neuropática, suprimindo a ativação astrocitária, bem como o aumento da TNF-α na EA, fornecendo esclarecimentos sobre os mecanismos de analgesia da acupuntura e o desenvolvimento de alvos terapêuticos para dor neuropática.


Subject(s)
Animals , Male , Rats , Spinal Cord/drug effects , Xanthines/pharmacology , Electroacupuncture/methods , Astrocytes/metabolism , Receptor, Adenosine A1/metabolism , Neuralgia/therapy , Sciatic Nerve/injuries , Spinal Cord/metabolism , Xanthines/administration & dosage , Injections, Spinal , Astrocytes/drug effects , Rats, Sprague-Dawley , Receptor, Adenosine A1/administration & dosage , Disease Models, Animal
3.
Braz. j. med. biol. res ; 51(6): e7061, 2018. graf
Article in English | LILACS | ID: biblio-889105

ABSTRACT

Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0-12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.


Subject(s)
Animals , Mice , Astrocytes/drug effects , Autophagy/drug effects , Cell Hypoxia/drug effects , Diterpenes/pharmacology , S100 Calcium Binding Protein beta Subunit/drug effects , Apoptosis/drug effects , Astrocytes/physiology , Blotting, Western , Cell Survival/drug effects , Real-Time Polymerase Chain Reaction , S100 Calcium Binding Protein beta Subunit/metabolism , Time Factors , Transfection
4.
Arq. neuropsiquiatr ; 75(8): 546-552, Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-888308

ABSTRACT

ABSTRACT Recent studies have demonstrated that curcumin (Cur) has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB) injections into the central nervous system (CNS) are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP). This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route) during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.


RESUMO Estudos recentes têm demonstrado que a curcumina (Cur) possui efeitos antioxidantes, anti-inflamatórios e antifibróticos. Sabe-se que a injeção de brometo de etídio (EB) no sistema nervoso central induz a perda oligodendroglial e astrocitária, resultando em desmielinização primária e neuroinflamação. Astrogliose periférica é observada ao redor da lesão com aumento da imunorreatividade à proteína glial fibrilar ácida (GFAP). A presente investigação objetivou avaliar o efeito da Cur sobre a resposta astrocitária após injúria gliotóxica. Ratos Wistar foram injetados com EB na cisterna basal e tratados ou não com Cur (100 mg/kg/dia, via intraperitoneal) durante o período experimental. Amostras do tronco encefálico foram coletadas aos 15, 21 e 31 dias pós-injeção de EB e processadas para estudo imuno-histoquímico para a GFAP. A reatividade astrocitária foi medida em um sistema computadorizado para análise de imagem. Nos ratos tratados com Cur, a área marcada para GFAP foi significantemente menor em todos os períodos pós-injeção de EB, indicando que a Cur reduz o desenvolvimento da cicatriz glial após injúria.


Subject(s)
Animals , Male , Rats , Brain Stem/pathology , Astrocytes/drug effects , Demyelinating Diseases/pathology , Curcumin/therapeutic use , Staining and Labeling , Brain Stem/drug effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Astrocytes/pathology , Demyelinating Diseases/chemically induced , Rats, Wistar , Curcumin/pharmacology , Disease Models, Animal , Ethidium , Glial Fibrillary Acidic Protein/metabolism
5.
Arq. neuropsiquiatr ; 74(9): 730-736, Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-796044

ABSTRACT

ABSTRACT Propentofylline is a xanthine derivative that depresses activation of glial cells, whose responses contribute to neural tissue damage during inflammation. Ethidium bromide injection into the central nervous system induces local oligodendroglial and astrocytic loss, resulting in primary demyelination, neuroinflammation and blood-brain barrier disruption. Surviving astrocytes present a vigorous reaction around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP). Objective This study aimed to evaluate the effect of propentofylline administration on astrocytic response following gliotoxic injury. Method Wistar rats were injected with ethidium bromide into the cisterna pontis and treated or not with propentofylline (12.5mg/kg/day, intraperitoneal) during the experimental period. Brainstem sections were collected from 15 to 31 days after gliotoxic injection and processed for GFAP immunohistochemistry. Results and Conclusion Results demonstrate that propentofylline decreased astrocytic activation until the 21st day, suggesting that this drug may have a role in reducing glial scar development following injury.


RESUMO A propentofilina é uma xantina que deprime a ativação das células gliais, cujas respostas contribuem para o dano neural durante inflamação. A injeção de brometo de etídio no sistema nervoso central induz a perda oligodendroglial e astrocitária, resultando em desmielinização, neuroinflamação e ruptura da barreira hematoencefálica. Os astrócitos sobreviventes apresentam vigorosa reação ao redor da lesão com aumento da imunorreatividade à proteína glial fibrilar ácida (GFAP). Objetivo Este estudo objetivou avaliar o efeito da propentofilina sobre a resposta astrocitária após injúria gliotóxica. Método Ratos Wistar foram injetados com brometo de etídio na cisterna basal e tratados ou não com propentofilina (12.5mg/kg/dia, intraperitoneal). Amostras do tronco encefálico foram coletadas dos 15 aos 31 dias pós-injeção do gliotóxico e processadas para estudo ultraestrutural e imuno-histoquímico para GFAP. Resultados e Conclusão Os resultados demonstram que a propentofilina reduziu a ativação astrocitária até o 21o dia, sugerindo que essa droga pode atuar na redução da cicatriz glial após injúria.


Subject(s)
Animals , Male , Xanthines/pharmacology , Brain Stem/drug effects , Astrocytes/drug effects , Neuroprotective Agents/pharmacology , Time Factors , Brain Stem/metabolism , Immunohistochemistry , Astrocytes/metabolism , Reproducibility of Results , Demyelinating Diseases/metabolism , Demyelinating Diseases/prevention & control , Treatment Outcome , Rats, Wistar , Disease Models, Animal , Ethidium/toxicity , Glial Fibrillary Acidic Protein/analysis , Glial Fibrillary Acidic Protein/drug effects , Gliotoxin/toxicity
6.
Einstein (Säo Paulo) ; 14(1): 56-63, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-778496

ABSTRACT

ABSTRACT Objective To evaluate the phytochemical composition of hydroethanolic extracts from powdered aerial parts of Turnera diffusa Willd (Turneraceae; T. diffusa), as well as its toxicity in astrocytes. Methods Chemical analyses of hydroethanolic extract from powdered aerial parts ofT. diffusa were carried out using HPLC-DAD-ESI-MS/MS.In vitro assays using astrocytes culture were performed to evaluate cell death. Results Flavone-C, O-diglycosides, such as, luteolin-8-C-[6-deoxy-2-O-rhamnosyl]-xylo-hexos-3-uloside, apigenin-8-C-[6-deoxy-2-O-rhamnosyl]-xylo-hexos-3-uloside and apigenin-7-O-6”-p-coumaroylglucoside were the main compounds found in this hydroethanolic extract. Concentration time-effect demonstrated the toxicity of this extract at a concentration of 1,000µg/mL in astrocyte culture, after 6 and 24 hours of incubation. Conclusion In phytochemical analyses, important antioxidants (mainly flavonoids) were observed. T. diffusa extracts presented cytotoxic effect in high concentrations, leading to increased cell death in astrocyte culture.


RESUMO Objetivo Avaliar a composição fitoquímica do extrato hidroetanólico das partes aéreas de Turnera diffusa Willd (Turneraceae; T. diffusa) e sua toxicidade em astrócitos. Métodos Análises químicas do extrato hidroetanólico de partes aéreas de T. diffusa foram feitas por HPLC-DAD-ESI-MS/MS. Os ensaiosin vitro utilizaram culturas de astrócitos para avaliar morte celular. Resultados Flavonas-C, O-diglicosídeos, como, luteolina-8-C-[6-deoxi-2-O-raminosil]-xilo-hexos-3-ulosideo, apigenina-8-C-[6-deoxi-2-O-raminosil]-xilo-hexos-3-ulosideo e apigenina-7-O-6”-p-cumaroilglucosídeo foram os principais constituintes encontrados neste extrato hidroetanólico. Uma curva tempo-concentração demonstrou toxicidade desse extrato na concentração de 1.000µg/mL, na cultura de astrócitos após 6 e 24 horas de incubação. Conclusão Nas análises fitoquímicas, importantes antioxidantes, sobretudo flavonoides, foram observados. Extratos de T. diffusa apresentaram efeitos citotóxicos em altas concentrações, ocasionando aumento de morte celular em cultura de astrócitos.


Subject(s)
Animals , Rats , Plant Extracts/chemistry , Astrocytes/drug effects , Turnera/chemistry , Antioxidants/chemistry , Plant Extracts/toxicity , Astrocytes/chemistry , Chromatography, High Pressure Liquid/methods , Cell Death/drug effects , Spectrometry, Mass, Electrospray Ionization/methods , Flavones/analysis , Flavones/toxicity
7.
Rev. bras. epidemiol ; 18(1): 262-277, Jan-Mar/2015. tab
Article in Portuguese | LILACS | ID: lil-736428

ABSTRACT

INTRODUÇÃO: O absenteísmo-doença, enquanto falta ao trabalho justificada por licença médica, é um importante indicador das condições de saúde dos trabalhadores. Em geral, características sociodemográficas e ocupacionais situam-se entre os principais fatores associados ao absenteísmo-doença. A administração pública é responsável por 21,8% dos empregos formais no Brasil. Esta população permite o estudo de uma grande variedade de categorias profissionais. OBJETIVO: Analisar o perfil e os indicadores de absenteísmo-doença entre servidores municipais de Goiânia, no Estado de Goiás, Brasil. Métodos: Estudo transversal das licenças certificadas para tratamento de saúde superiores a três dias, de todos os servidores, desde janeiro de 2005 a dezembro de 2010. Foram calculadas as prevalências, utilizando como critérios o número de indivíduos, os episódios e os dias de afastamento. RESULTADOS: Foram concedidas 40.578 licenças certificadas para tratamento de saúde a 13.408 servidores numa população média anual de 17.270 pessoas, o que resultou em 944.722 dias de absenteísmo. A prevalência acumulada de licença no período foi de 143,7%, com média anual de 39,2% e duração de 23 dias por episódio. A prevalência acumulada de absenteísmo-doença foi maior entre mulheres (52,0%) com idade superior a 40 anos (55,9%), com companheiro (49,9%), de baixa escolaridade (54,4%), profissionais de educação (54,7%), > 10 anos de serviço (61,9%) e múltiplos vínculos profissionais (53,7%). Os grupos de diagnósticos (CID-10) com as maiores prevalências acumuladas de licenças foram os do capítulo de transtornos mentais (26,5%), doenças osteomusculares (25,1%) e lesões (23,6%). CONCLUSÕES: Os indicadores de absenteísmo-doença expressam a magnitude desse fenômeno no serviço público e podem auxiliar no planejamento das ações de saúde do trabalhador, priorizando os grupos ocupacionais mais vulneráveis. .


BACKGROUND: Sickness absence, as work absenteeism justified by medical certificate, is an important health status indicator of the employees and, overall, sociodemographic and occupational characteristics are among the main factors associated with sickness absence. Public administration accounts for 21.8% of the formal job positions in Brazil. This population allows the study of a wide range of professional categories. OBJECTIVE: To assess the profile and indicators of sickness absence among public workers from the municipality of Goiania, in the State of Goiás, Brazil. METHODS: A cross-sectional study on certified sick leaves, lasting longer than three days, of all civil servants from January 2005 to December 2010. Prevalence rates were calculated using as main criteria the number of individuals, episodes and sick days. RESULTS: 40,578 certified sick leaves were granted for health treatment among 13,408 public workers, in an annual average population of 17,270 people, which resulted in 944,722 days of absenteeism. The cumulative prevalence of sick leave for the period was of 143.7%, with annual average of 39.2% and duration of 23 days per episode. The cumulative prevalence of sickness absence was higher among women (52.0%), older than 40 years old (55.9%), with a partner (49.9%), low schooling (54.4%), education professionals (54.7%), > 10 years of service (61.9%), and with multiple work contracts (53.7%). Diagnoses groups (ICD-10) with higher cumulative prevalence of sick leaves were those with mental disorders (26.5%), musculoskeletal diseases (25.1%), and injuries (23.6%). CONCLUSIONS: Indicators of sickness absence express the magnitude of this phenomenon in the public sector and can assist in planning health actions for the worker, prioritizing the most vulnerable occupational groups. .


Subject(s)
Animals , Male , Rats , Complement Factor H , Cytokines/immunology , Neuroglia/immunology , Seizures/immunology , Age Factors , Amino Acid Transport System X-AG/immunology , Amino Acid Transport System X-AG/physiology , Astrocytes/drug effects , Astrocytes/immunology , Astrocytes/physiology , Blotting, Western , Clusterin/immunology , Cytokines/drug effects , Cytokines/physiology , Disease Models, Animal , Disease Susceptibility/immunology , Fluorescent Antibody Technique , Hippocampus/immunology , Hippocampus/physiology , Immunohistochemistry , Inflammation/immunology , Kainic Acid , Microglia/drug effects , Microglia/immunology , Microglia/physiology , Neuroglia/drug effects , Random Allocation , Rats, Sprague-Dawley , Severity of Illness Index , Seizures/chemically induced , Seizures/physiopathology , Up-Regulation/drug effects , Up-Regulation/immunology , Up-Regulation/physiology
8.
Arch. endocrinol. metab. (Online) ; 59(1): 47-53, 02/2015. tab, graf
Article in English | LILACS | ID: lil-746451

ABSTRACT

Objective The diabetic state induced by streptozotocin injection is known to impair oligodendroglial remyelination in the rat brainstem following intracisternal injection with the gliotoxic agent ethidium bromide (EB). In such experimental model, propentofylline (PPF) recently showed to improve myelin repair, probably due to its neuroprotective, antiinflammatory and antioxidant effects. The aim of this study was to evaluate the effect of PPF administration in diabetic rats submitted to the EB-demyelinating model. Materials and methods Adult male rats, diabetic or not, received a single injection of 10 microlitres of 0.1% EB solution into the cisterna pontis. For induction of diabetes mellitus the streptozotocin-diabetogenic model was used (50 mg/kg, intraperitoneal route – IP). Some diabetic rats were treated with PPF (12.5 mg/kg/day, IP route) during the experimental period. The animals were anesthetized and perfused from 7 to 31 days after EB injection and brainstem sections were collected for analysis of the lesions by light and transmission electron microscopy. Results Diabetic rats injected with EB showed larger amounts of myelin-derived membranes in the central areas of the lesions and considerable delay in the remyelinating process played by surviving oligodendrocytes and invading Schwann cells after the 15th day. On the other hand, diabetic rats that received PPF presented lesions similar to those of non-diabetic animals, with rapid remyelination at the edges of the lesion site and fast clearance of myelin debris from the central area. Conclusion The administration of PPF apparently reversed the impairment in remyelination induced by the diabetic state. Arch Endocrinol Metab. 2015;59(1):47-53 .


Subject(s)
Animals , Male , Astrocytes/drug effects , Demyelinating Diseases/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Myelin Sheath/physiology , Neuroprotective Agents/pharmacology , Xanthines/pharmacology , Disease Models, Animal , Demyelinating Diseases/pathology , Diabetes Mellitus, Experimental/chemically induced , Ethidium/toxicity , Microscopy, Electron, Transmission , Macrophages/drug effects , Mesencephalon/pathology , Nerve Regeneration/drug effects , Neuroprotective Agents/administration & dosage , Pons/pathology , Rats, Wistar , Streptozocin , Schwann Cells/drug effects , Xanthines/administration & dosage
9.
Biomédica (Bogotá) ; 34(3): 366-378, July-Sept. 2014. ilus
Article in Spanish | LILACS | ID: lil-726786

ABSTRACT

Introducción. El accidente cerebrovascular es la segunda causa de muerte y la primera de discapacidad en el mundo, y más de 85 % es de origen isquémico. Objetivo. Evaluar en un modelo de infarto cerebral por embolia arterial el efecto de la atorvastatina y el meloxicam, administrados por separado y de forma conjunta, sobre la respuesta neuronal, los astrocitos y la microglia. Materiales y métodos. Se sometieron ratas Wistar a embolia de la arteria carótida y a tratamiento con meloxicam y atorvastatina, administrados por separado y conjuntamente, a las 6, 24, 48 y 72 horas. Se evaluó la reacción de las proteínas COX-2, GFAP y OX-42 en las neuronas, los astrocitos y la microglia mediante inmunohistoquímica y estudios morfológicos y de densitometría. Los datos obtenidos se evaluaron por medio de un análisis de varianza y de pruebas no paramétricas de comparación múltiple. Resultados. La isquemia cerebral por embolia arterial incrementó significativamente (p<0,001) la reacción de los astrocitos y la microglia, en tanto que la atorvastatina y el meloxicam, administrados por separado y de forma conjunta, la redujeron. La isquemia produjo acortamiento de las proyecciones de los astrocitos, engrosamiento celular, ruptura de las expansiones protoplásmicas (clasmatodendrosis) y cambios morfológicos en la microglia propios de diversas etapas de actividad. En las zonas circundantes del foco se incrementó la reacción inmunológica de la COX-2 y se redujo en el foco isquémico, en tanto que el meloxicam y la atorvastatina redujeron significativamente (p<0,001) la reacción inmunológica en la zona circundante del foco, restableciendo la marcación de la ciclooxigenasa en el foco isquémico. Conclusión. La combinación de meloxicam y atorvastatina atenúa la respuesta de los astrocitos y la microglia en el proceso inflamatorio posterior a la isquemia cerebral por embolia arterial, reduciendo la degeneración neuronal y restableciendo el equilibrio morfológico y funcional del tejido nervioso.


Introduction: Stroke is the second leading cause of death and the first cause of disability in the world, with more than 85% of the cases having ischemic origin. Objective: To evaluate in an embolism model of stroke the effect of atorvastatin and meloxicam on neurons, astrocytes and microglia. This evaluation was done administering each medication individually and in association. Materials and methods: Wistar rats were subjected to carotid arterial embolism and treatment with meloxicam and atorvastatin at 6, 24, 48 and 72 hours. Using immunohistochemistry, we evaluated the immunoreactivity of COX-2 protein, GFAP and OX-42 in neurons, astrocytes and microglia by densitometric and morphological studies. Data were evaluated by variance analysis and non-parametric multiple comparison. Results: Cerebral ischemia by arterial embolism increased significantly the reactivity of microglia and astrocytes (p<0.001), whereas it was reduced by atorvastatin, meloxicam and their association. Ischemia produced astrocytic shortening, cellular thickening, protoplasmic rupture expansions (clasmatodendrosis) and microglial morphological changes characteristic of various activity stages. In perifocal areas, immunoreactivity of COX-2 was increased and in the ischemic focus it was reduced, while meloxicam and atorvastatin significantly reduced (p<0.001) perifocal immunoreactivity, restoring the marking of cyclooxygenase in the ischemic focus. Conclusion: These results suggest that the meloxicam-atorvastatin association attenuates astrocytic and microglial response in the inflammatory process after cerebral ischemia by arterial embolism, reducing neurodegeneration and restoring the morphological and functional balance of nervous tissue .


Subject(s)
Animals , Female , Rats , Brain Ischemia/drug therapy , Cyclooxygenase Inhibitors/therapeutic use , Heptanoic Acids/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Intracranial Embolism/complications , Nerve Degeneration/prevention & control , Pyrroles/therapeutic use , Thiazines/therapeutic use , Thiazoles/therapeutic use , Atorvastatin , /analysis , Astrocytes/drug effects , Astrocytes/pathology , Biomarkers , Brain Ischemia/etiology , Brain Ischemia/pathology , Carotid Stenosis/complications , Carotid Stenosis/pathology , Cyclooxygenase Inhibitors/administration & dosage , Disease Models, Animal , Drug Evaluation, Preclinical , Glial Fibrillary Acidic Protein/analysis , Heptanoic Acids/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Inflammation , Intracranial Embolism/pathology , Microglia/drug effects , Microglia/pathology , Nerve Tissue Proteins/analysis , Pyrroles/administration & dosage , Random Allocation , Rats, Wistar , Thiazines/administration & dosage , Thiazoles/administration & dosage
10.
Scientific Journal of Kurdistan University of Medical Sciences. 2014; 19 (4): 100-108
in Persian | IMEMR | ID: emr-153690

ABSTRACT

Stroke is one of the main leading causes of mortality and disability in many countries. In the absence of definitive treatment search for, neuroprotective agents with minimal side effects should be continued. Natural nutrients can be ideal sources to produce safe and valuable agents for the management of stroke. Walnut kernel [WK] has numerous beneficial components with antioxidant and anti-inflammatory properties. The goal of this study was to investigate the protective effects of WK on neuronal injury and astrocyte reactivity after induction of focal cerebral ischemia in male rats. In this experimental study, Wistar male rats were divided into three groups: sham, control [fed with ordinary food] and walnut [fed with WK]. Each group consisted of 6 rats. The right middle cerebral artery was occluded for 15 min in the control and walnut groups. Forty-eight hours after reperfusion the animals were killed and their brains were processed for histological [Hematoxylin and Eosin staining] and immunohistochemical [Glial Fibrillary Acidic Protein, GFAP], and histochemical [TUNEL] studies. The results showed that WK significantly decreased neuronal death induced by cerebral ischemia; however, the density of GFAP positive astrocytes has been increased at the site of injury in the treatment group compared to the other 2 groups. In addition, WK significantly decreased the mortality rate of the animals due to cerebral ischemia. The results suggested that wk might provide protection against the cerebral ischemia-induced injuries in the rat brain through antioxidant and anti-inflammatory mechanisms


Subject(s)
Animals, Laboratory , Neurons/drug effects , Astrocytes/drug effects , Infarction, Middle Cerebral Artery , Protective Agents , Rats, Wistar
11.
Experimental & Molecular Medicine ; : e80-2014.
Article in English | WPRIM | ID: wpr-72399

ABSTRACT

Epidemiological studies have suggested an association between pesticide exposure and Parkinson's disease. In this study, we examined the neurotoxicity of an organochlorine pesticide, heptachlor, in vitro and in vivo. In cultured SH-SY5Y cells, heptachlor induced mitochondria-mediated apoptosis. When injected into mice intraperitoneally on a subchronic schedule, heptachlor induced selective loss of dopaminergic neurons in the substantia nigra pars compacta. In addition, the heptachlor injection induced gliosis of microglia and astrocytes selectively in the ventral midbrain area. When the general locomotor activities were monitored by open field test, the heptachlor injection did not induce any gross motor dysfunction. However, the compound induced Parkinsonism-like movement deficits when assessed by a gait and a pole test. These results suggest that heptachlor can induce Parkinson's disease-related neurotoxicities in vivo.


Subject(s)
Animals , Humans , Mice , Apoptosis , Astrocytes/drug effects , Cell Line, Tumor , Cells, Cultured , Dopaminergic Neurons/drug effects , Gait , Heptachlor/toxicity , Locomotion , Neurotoxicity Syndromes/etiology , Parkinsonian Disorders/chemically induced , Pesticides/toxicity , Substantia Nigra/drug effects
12.
Indian J Exp Biol ; 2013 Aug; 51(8): 606-614
Article in English | IMSEAR | ID: sea-149363

ABSTRACT

Polyinosinic:polycytidylic acid (Poly I:C; 5 mg/kg body weight, ip) and lipopolysaccharide (LPS; 0.3 mg/kg body weight, ip) induced microglial and astrocytic activation in Sprague Dawley rats. Higher microglial and astrocytic activities were noticed in Poly I:C infused rats throughout the hippocampus till postnatal day 21 with a comparatively weaker response in LPS group. However, LPS induced inflammation persisted even after postnatal day 21, indicating thereby, that the Poly I:C (viral mimic) produces an acute inflammation, while LPS (bacterial endotoxin) produces chronic inflammation when exposed during early neonatal life.


Subject(s)
Acute Disease , Animals , Animals, Newborn , Antiviral Agents/pharmacology , Astrocytes/drug effects , Astrocytes/immunology , Astrocytes/metabolism , Chronic Disease , Female , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/metabolism , Immunoenzyme Techniques , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Lipopolysaccharides/pharmacology , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , Poly I-C/pharmacology , Rats , Rats, Sprague-Dawley
13.
Yonsei Medical Journal ; : 321-329, 2013.
Article in English | WPRIM | ID: wpr-120576

ABSTRACT

PURPOSE: Lamotrigine, a novel anticonvulsant, is a sodium channel blocker that is efficacious in certain forms of neuropathic pain. Recently, microglial and astrocytic activation has been implicated in the development of nerve injury-induced neuropathic pain. We have assessed the effects of continuous intrathecal administration of lamotrigine on the development of neuropathic pain and glial activation induced by L5/6 spinal-nerve ligation in rats. MATERIALS AND METHODS: Following left L5/6 spinal nerve ligation (SNL), Sprague-Dawley male rats were intrathecally administered lamotrigine (24, 72, or 240 microg/day) or saline continuously for 7 days. Mechanical allodynia of the left hind paw to von Frey filament stimuli was determined before surgery (baseline) and once daily for 7 days postoperatively. On day 7, spinal activation of microglia and astrocytes was evaluated immunohistochemically, using antibodies to the microglial marker OX-42 and the astrocyte marker glial fibrillary acidic protein (GFAP). RESULTS: Spinal-nerve ligation induced mechanical allodynia in saline-treated rats, with OX-42 and GFAP immunoreactivity being significantly increased on the ipsilateral side of the spinal cord. Continuously administered intrathecal lamotrigine (240 microg/day) prevented the development of mechanical allodynia, and lower dose of lamotrigine (72 microg/day) ameliorated allodynia. Intrathecal lamotrigine (72 and 240 microg/day) inhibited nerve ligation-induced microglial and astrocytic activation, as evidenced by reduced numbers of cells positive for OX-42 and GFAP. CONCLUSION: Continuously administered intrathecal lamotrigine blocked the development of mechanical allodynia induced by SNL with suppression of microglial and astrocytic activation. Continuous intrathecal administration of lamotrigine may be a promising therapeutic intervention to prevent neuropathy.


Subject(s)
Animals , Male , Rats , Astrocytes/drug effects , Disease Models, Animal , Hyperalgesia/drug therapy , Infusions, Spinal , Ligation , Microglia/drug effects , Neuralgia/drug therapy , Rats, Sprague-Dawley , Spinal Nerves/injuries , Triazines/administration & dosage , Voltage-Gated Sodium Channel Blockers/administration & dosage
14.
Journal of Korean Medical Science ; : 404-411, 2011.
Article in English | WPRIM | ID: wpr-52132

ABSTRACT

As one of trials on neuroprotection after spinal cord injury, we used pregabalin. After spinal cord injury (SCI) in rats using contusion model, we observed the effect of pregabalin compared to that of the control and the methylprednisolone treated rats. We observed locomotor improvement of paralyzed hindlimb and body weight changes for clinical evaluation and caspase-3, bcl-2, and p38 MAPK expressions using western blotting. On histopathological analysis, we also evaluated reactive proliferation of glial cells. We were able to observe pregabalin's effectiveness as a neuroprotector after SCI in terms of the clinical indicators and the laboratory findings. The caspase-3 and phosphorylated p38 MAPK expressions of the pregabalin group were lower than those of the control group (statistically significant with caspase-3). Bcl-2 showed no significant difference between the control group and the treated groups. On the histopathological analysis, pregabalin treatment demonstrated less proliferation of the microglia and astrocytes. With this animal study, we were able to demonstrate reproducible results of pregabalin's neuroprotection effect. Diminished production of caspase-3 and phosphorylated p38 MAPK and as well as decreased proliferation of astrocytes were seen with the administration of pregabalin. This influence on spinal cord injury might be a possible approach for achieving neuroprotection following central nervous system trauma including spinal cord injury.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Astrocytes/drug effects , Blotting, Western , Body Weight/drug effects , Caspase 3/genetics , Cell Proliferation , Fluorescent Antibody Technique , Gene Expression , Hindlimb/drug effects , Inflammation , Methylprednisolone/therapeutic use , Microglia/drug effects , Motor Activity/drug effects , Neuroglia/drug effects , Neuroprotective Agents/therapeutic use , Paralysis/drug therapy , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Sprague-Dawley , Spinal Cord Injuries/drug therapy , gamma-Aminobutyric Acid/analogs & derivatives , p38 Mitogen-Activated Protein Kinases/genetics
15.
Article in English | IMSEAR | ID: sea-24714

ABSTRACT

BACKGROUND & OBJECTIVES: The distribution of brain interleukin-6 (IL-6) may be asymmetrical both in cortex and hippocampus. While the brain asymmetry has been extensively investigated, the cellular origin of asymmetrical cytokine induction in the cortex has not been addressed. It was hypothesized that the immune function of glia cell to the inflammatory insults is asymmetrically distributed in the two brain hemispheres. To test this hypothesis, we examined the IL-6 secreting ability of the astrocytes in both the left and right neocortex treated with lipopolysaccharide(LPS) cultured in vitro. METHODS: Two groups of astrocytes cultured in vitro from the two cerebral cortices of the neonatal BALB/ c mice were selected and experimental group was treated with LPS (10 mug/ml) for 24 h. IL-6 levels were measured in both LPS-treated and untreated astrocytes. To confirm the gene array data on the secretion of IL-6 by cortical astrocytes in the left and right hemispheres, semi-quantitative reverse transcriptionpolymerase chain reaction (RT-PCR) was conducted. RESULTS: A statistically significant difference between the levels of IL-6 in cortical astrocytes in the left and right hemispheres of culture supernatants was observed (P<0.05). Cortical astrocytes in the left hemisphere had significantly increased IL-6 mRNA levels compared with cortical astrocytes in right hemisphere (P<0.05). INTERPRETATION & CONCLUSION: The results showed asymmetrical release of brain IL-6 by cerebral cortical astrocytes to the inflammatory insults both in protein and mRNA levels.


Subject(s)
Analysis of Variance , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Cerebral Cortex/cytology , DNA Primers/genetics , Interleukin-6/metabolism , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Reverse Transcriptase Polymerase Chain Reaction
16.
Braz. j. med. biol. res ; 42(2): 179-188, Feb. 2009. ilus, graf
Article in English | LILACS | ID: lil-506879

ABSTRACT

The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.


Subject(s)
Animals , Female , Rats , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Neuronal Plasticity/drug effects , Peptides/therapeutic use , Spinal Cord/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/ultrastructure , Encephalomyelitis, Autoimmune, Experimental/metabolism , Microscopy, Electron, Transmission , Motor Neurons/drug effects , Motor Neurons/physiology , Multiple Sclerosis/metabolism , Neuronal Plasticity/physiology , Rats, Inbred Lew , Spinal Cord/metabolism , Spinal Cord/ultrastructure , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Synaptophysin/analysis
17.
Experimental & Molecular Medicine ; : 86-93, 2009.
Article in English | WPRIM | ID: wpr-103080

ABSTRACT

The infiltration of monocytes into the CNS represents one of the early steps to inflammatory events in AIDS-related encephalitis and dementia. Increased activity of selected matrix metalloproteinases (MMPs) such as MMP-9 impairs the integrity of blood-brain barrier leading to enhanced monocyte infiltration into the CNS. In this study, we examined the effect of HIV-1 Tat on the expression of MMP-9 in CRT-MG human astroglioma cells. Treatment of CRT-MG cells with HIV-1 Tat protein significantly increased protein levels of MMP-9, as measured by Western blot analysis, zymography and an ELISA. Treatment of CRT-MG cells with HIV-1 Tat protein markedly increased mRNA levels of MMP-9, as analyzed by RT-PCR. Pretreatment of CRT-MG cells with NF-kappaB inhibitors led to decrease in Tat-induced protein and mRNA expression of MMP-9. Pretreatment of CRT-MG cells with MAPK inhibitors suppressed Tat-induced MMP-9 expression. Furthermore, HIV-1 Tat-induced expression of MMP-9 was significantly inhibited by neutralization of TNF-alpha, but not IL-1beta and IL-6. Taken together, our results indicate that HIV-1 Tat can up-regulate expression of MMP-9 via MAPK-NF-kappaB-dependent mechanisms as well as Tat-induced TNF-alpha production in astrocytes.


Subject(s)
Humans , AIDS Dementia Complex/metabolism , Astrocytes/drug effects , HIV Infections/complications , HIV-1 , Matrix Metalloproteinase 9/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/immunology , Up-Regulation/drug effects , tat Gene Products, Human Immunodeficiency Virus/metabolism
18.
Braz. j. med. biol. res ; 40(3): 285-291, Mar. 2007. ilus
Article in English | LILACS | ID: lil-441772

ABSTRACT

This review addresses the mechanisms of methylmercury (MeHg)-induced neurotoxicity, specifically examining the role of oxidative stress in mediating neuronal damage. A number of critical findings point to a central role for astrocytes in mediating MeHg-induced neurotoxicity as evidenced by the following observations: a) MeHg preferentially accumulates in astrocytes; b) MeHg specifically inhibits glutamate uptake in astrocytes; c) neuronal dysfunction is secondary to disturbances in astrocytes. The generation of reactive oxygen species (ROS) by MeHg has been observed in various experimental paradigms. For example, MeHg enhances ROS formation both in vivo (rodent cerebellum) and in vitro (isolated rat brain synaptosomes), as well as in neuronal and mixed reaggregating cell cultures. Antioxidants, including selenocompounds, can rescue astrocytes from MeHg-induced cytotoxicity by reducing ROS formation. We emphasize that oxidative stress plays a significant role in mediating MeHg-induced neurotoxic damage with active involvement of the mitochondria in this process. Furthermore, we provide a mechanistic overview on oxidative stress induced by MeHg that is triggered by a series of molecular events such as activation of various kinases, stress proteins and other immediate early genes culminating in cell damage.


Subject(s)
Animals , Rats , Astrocytes/drug effects , Glutamic Acid/drug effects , Mercury Poisoning, Nervous System/metabolism , Methylmercury Compounds/toxicity , Neurons/drug effects , Oxidative Stress/drug effects , Astrocytes/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species
19.
Arq. neuropsiquiatr ; 64(3b): 787-793, set. 2006. ilus, tab
Article in Portuguese, English | LILACS | ID: lil-437150

ABSTRACT

O gliotóxico brometo de etídio (BE) foi utilizado para o estudo da resposta macrofágica e astrocitária sob imunossupressão com ciclofosfamida (CY). Investigou-se a imunorreatividade astrocitária à proteína glial fibrilar ácida (GFAP) e à vimentina (VIM), e a imunorreatividade macrofágica ao ED1 após injeção do BE. Foram utilizados ratos Wistar adultos injetados na cisterna basal com salina a 0,9 por cento (grupo I), BE a 0,1 por cento (grupo II) e BE a 0,1 por cento, imunossuprimidos com CY (grupo III). Fragmentos do tronco encefálico foram colhidos do 1° ao 21° dia pós-injeção para estudo imuno-histoquímico da GFAP, VIM e ED1. Nos grupos II e III, observou-se imunorreatividade aumentada para GFAP e re-expressão de VIM. No grupo II, células ED1-positivas foram observadas a partir do 2° dia e no grupo III, a partir do 3° dia. Aos 14 dias pós-injeção, havia mais células ED1-positivas no grupo III. A CY aparentemente não alterou a resposta astrocitária.


The gliotoxic ethidium bromide (EB) was used to study morphologically the macrophagic and astrocytic response under immunosuppression by cyclophosphamide (CY). Astrocyte immunoreactivity to glial fibrillary acidic protein (GFAP) and vimentin (VIM) and macrophagic immunoreactivity to ED1 were investigated after EB injection. Male Wistar rats were injected with 0.9 percent saline solution (group I), 0.1 percent BE (group II) and 0.1 percent EB associated with CY treatment (group III). Brainstem samples were collected from the 1st to the 21st day post-injection for GFAP, VIM and ED1 immunostaining. In groups II and III, it was observed increased immunoreactivity to GFAP and reexpression of VIM. In group II, ED1-positive cells were noted after the 2nd day and in group III, after the 3rd day. On the 14th day post-injection, it was observed a greater quantity of ED1- positive cells in group III than in group II. Apparently, CY did not change the astrocytic response pattern.


Subject(s)
Animals , Male , Rats , Astrocytes/drug effects , Brain Stem/pathology , Cyclophosphamide/therapeutic use , Ethidium/toxicity , Immunosuppressive Agents/therapeutic use , Macrophages/drug effects , Astrocytes/pathology , Brain Stem/drug effects , Disease Models, Animal , Immunohistochemistry , Macrophages/pathology , Rats, Wistar , Staining and Labeling
20.
Neurosciences. 2006; 11 (3): 135-139
in English | IMEMR | ID: emr-79730

ABSTRACT

To determine whether IgG from amyotrophic lateral sclerosis [ALS] patients could cause activation of microglia, proliferation of astrocytes, and infiltration by lymphocytes within mice spinal cords. A group of 5 mice received injections of IgG purified from sera of patients with ALS. A control group of 5 mice received IgG from healthy humans, whilst a third group of 2 mice served as non-injected controls. One mouse served as a positive control and was injected with lipopolysaccharide, a known activator of microglia. Mice were culled after one week, for immunocytochemistry of spinal cord sections to localize the complement receptor CD11b on activated microglia, glial fibrillary acidic protein on astrocytes, and CD4 and CD8 receptors on lymphocytes. Histological examination was used to determine the presence of inflammatory reaction. This work was conducted at the Institute of Neurology, Queen Square London, United Kingdom, from January to July 2004. There was no significant difference in activation of microglia between mice injected with ALS IgG and mice injected with control IgG [p = 0.631], although mice injected with ALS IgG exhibited greater microglial activation than non-injected mice [p = 0.044]. Proliferation of astrocytes was not significantly different between the 3 groups. CD4 and CD8 lymphocytes were both absent in mice injected with ALS IgG, mice injected with control IgG and non-injected mice. Activation of microglia following passive transfer of IgG from ALS patients to mice represents a non-specific inflammatory response, rather than a primary mechanism for motor neuron degeneration


Subject(s)
Animals, Laboratory , Immunoglobulin G/pharmacology , Microglia/drug effects , Mice , Spinal Cord , Immunization, Passive , Astrocytes/drug effects , Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL